<u>Pitch</u> Quantification

QOD™ - Quality Of Pitch™ and The Greiner Index

> Dr. Jason Wilson & Wayne Greiner

SABR Analytics Conference March 12, 2015

Acknowledgments

- Jarvis Greiner
- Joel Pixler & Rebecca Lee (Research Assistants)
- John Verhooven (Former MLB pitcher)

Pitch Quantification

- 2014 Cy Young Award
- 2014 League MVP
- 1.77 Regular Season E.R.A.
- 7.82 Post Season E.R.A.
- Poor Pitching? Or Great Hitting?

Table of Contents

- 1. Introduction
- 2. Motivation
 - **3. qop**™
 - 4. 2014 Case Study
 - a) When 2 no hit games are pitched, can a quantification index help us objectively identify the better pitching performance?
 - b) Can pitch quantification direct a manager or catcher in determining pitch selection?
 - c) Can a quantification index detect pitch deterioration that can precede injury?
 - d) Can an index validate or refute the outcome of certain pitcherbatter match-ups?
 - e) Does qop[™] confirm a change in pitch quality between a successful regular season and a disappointing postseason?
 - 5. Conclusion

2. Problems with current pitch analysis

- No objective system to rate breaking pitches (Fastball – MPH, Breaking ball- ?)
- Subjective: 'Nasty' Curveball or a 'Filthy' Slider?
- Deficiencies with results-based analysis (hitter-quality, umpire, environment, luck)
- No objective way to track improvement / decline in game / season / career
- No objective way to compare the quality of breaking balls between pitchers
- \rightarrow Remove subjective factors from evaluation
- \rightarrow Quantify pitches on a standardized scale

Table of Contents

- 1. Introduction
- 2. Motivation
- **3. qop**™
 - 4. 2014 Case Study
 - a) When 2 no hit games are pitched, can a quantification index help us objectively identify the better pitching performance?
 - b) Can pitch quantification direct a manager or catcher in determining pitch selection?
 - c) Can a quantification index detect pitch deterioration that can precede injury?
 - d) Can an index validate or refute the outcome of certain pitcherbatter match-ups?
 - e) Does qop[™] confirm a change in pitch quality between a successful regular season and a disappointing postseason?
 - 5. Conclusion

3. Task: Assign a measurement to a pitchCriteria: Difficulty of hitting the ball

3. Early Work: Curveballs Only

Wilson, Jason and Jarvis Greiner. 2014. A Curveball Index: Quantification of Breaking Balls for Pitchers. *CHANCE*. 27:3, p. 34-40.

Flight of the Curveball

Regression Variables: Rise, Total Break, Breaking Point, Location Dependent Variable: Score of pitching coach on 0 to 100 scale

8

3. Regression Output

y = -2.51*rise + 0.51*tot.break + 1.88*break.point - 0.47*loc
 quadratic & interaction terms were insignificant

Coefficients:

	Estimate Std. Error t value Pr(> t)	
rise	-2.50900 0.62227 -4.032 0.00043 *	***
total break	0.51122 0.06905 7.403 7.33e-08 *	***
breakpoint	1.87705 0.23530 7.977 1.87e-08 *	***
location	-0.47095 0.17489 -2.693 0.01224 *	ĸ

Residual standard error: 8.289 on 26 degrees of freedom Multiple R-squared: 0.9749, Adjusted R-squared: 0.73 F-statistic: 252 on 4 and 26 DF, p-value: < 2.2e-16

- Ex: rise = 3 in; tot.break=48 in; break.point=21.5 in; loc=8 in
 GI = -2.51*3 + 0.51*48 + 1.88*21.5 0.47*8 = 53.6
- Model fit was excellent (normal residuals, common variance, no problem with multicollinearity)

3. Extensions in Current Work

- 1. Horizontal break
- 2. Improved location parameter
- 3. ALL pitches
- 4. PITCHf/x data (feet, not inches)

5. MPH

Index (GI) **qop**™

Greiner

Normal MLB pitches are -10 to 10, but exceptional pitches can go outside range 10

Clayton Kershaw – June 18/14 vs COL – Fastball

- Good Velocity 92mph
- No break
- Poor Location
- 2.96 **qop**™
- Below Average Quality

Hyun-Jin Ryu – May 26/14 – vs CIN - Curveball

- Decent Break
- Very Late Break
- Very Good Location

0

- 8.09 **qop**™
- Above Average Quality

Strike Zone

Josh Beckett – May 25/14 vs PHI – Change Up

- Poor Velocity 85mph
- Very Poor Location
- -2.49 <mark>qop</mark>™
- Well Below Average Quality Strike Zone

Table of Contents

- 1. Introduction
- 2. Motivation
- **3.** qop™
- 4. 2014 Case Study
 - a) When 2 no hit games are pitched, can a quantification index help us objectively identify the better pitching performance?
 - b) Can pitch quantification direct a manager or catcher in determining pitch selection?
 - c) Can a quantification index detect pitch deterioration that can precede injury?
 - d) Can an index validate or refute the outcome of certain pitcherbatter match-ups?
 - e) Does qop[™] confirm a change in pitch quality between a successful regular season and a disappointing postseason?
 - 5. Conclusion

4. Case Study

- LA Dodgers, 2014
- Team record of 1,373 strikeouts
- Kershaw 7.71 K/BB
- What can we learn from their qop™?

espn.go.com

4. Stats Overview

p-value = the probability that the difference from what is expected is due to chance

- Usual benchmark is 0.05
 - \rightarrow If p-value < 0.05, result is "statistically significant"
- Ex. 1: Kershaw's Regular Season MPH = 92.96 Post Season MPH = 93.38

• Ex. 2: Trend of **qop**™

<u>#1 – Objective Pitcher Comparison</u>

- 1. Rate and compare pitcher ability
 - Scouting, drafting, salary determination
 - Removing subjective factors: competition, age, environment, etc.
- 2. Which game featured the better pitching performance?

Traditional Statistics

Player	Date	Team	BB	K	BF	PIT	STR	STL	STS	GB	FB	LD	PU
Josh Beckett	May 25	Phi	3	6	30	128	80	29	13	10	11	3	3
Clayton Kershaw	June 18	Col	0	15	28	107	79	18	22	9	4	1	0

Philadelphia batting average at home: .239 Colorado batting average on the road: .228

Kershaw & Beckett 2014 No-Hitters

MPH = speed; GI = trajectory + location; QOP combines all $3 \rightarrow$ Adds info!

MPH: GI.offspeed: GI.fastball: **QOD**™:

- Lin (83.48) < Beck (84.59)Zim (2.63) = Ker (2.63)
- Zim(1.41) < Beck(1.79)

Beck (4.34) < Zim (4.38)

- < Ker (87.89) < Zim (91.29)
- < Lin (2.76) < Beck (2.80)
- < Lin (1.97) < Ker (2.13)
- < Lin (4.48) < Ker (4.76)

<u>#2 – In Game Evaluation</u>

- 1. Analysis of a pitcher's in game performance
- 2. Can we detect a decline in pitch quality that could have determined alternate pitch selection and/or influence managerial decisions?

Ryu's Off-speed Pitches in 2014

Ryu's Off-speed Pitches in 2014

p-value of line = 0.6531

For the Season, Ryu's off-speed MPH and **qop™** were steady

(fastballs got faster, not shown) Off-speed MPH flat p-value>.05 (fastballs similar, not shown)

Off-speed **QOP**[™] **declined P-value<.05** (fastballs did not, not shown)

→ MPH = speed,
qop[™] gives
additional info

Ryu's Off-Speed Pitches on May 26

<u>#3 - Injury Prevention</u>

- 1. Analysis of a pitcher's season performance
- Can we prevent injury by identifying pitch deterioration patterns using qop[™] data?
 - A proactive approach with players instead of passively waiting for player feedback

Fastball MPH flat p-value>.05 (off-speeds similar, not shown)

Fastball **QOP™ declined p-value<.05** (off-speeds did not, not shown)

Cross-game decline discovered with **qop™**, but not MPH

→ MPH = speed;
qop[™] adds info

Beckett's Fastballs, May 25-Aug 3

Index of pitches in groups of 10

p-value of line 0.0299

26

<u>#4 – Hitter Evaluation</u>

- 1. Analysis of hitter's performance against different pitchers
 - Hitter's with higher/lower batting averages facing higher/lower quality pitches
 Network for the second planet.
 - \rightarrow Identify under/over valued players
 - Confirm or refute of statistical anomalies
 - Check validity of higher/lower than average success rates of hitters against certain pitchers, and vice versa

2. Can qop™ give insight into why one hitter succeeds while another fails against the same pitcher?

> Adam Dunn vs. Clayton Kershaw

		Overall	
	Dunn vs. Kershaw	2008-2014	p-value
Kershaw AMPH	91.56	88.68	<0.0001
Kershaw qopa™	4.63 (5.20 On Hits)	4.49	0.503
Dunn Batting Avg.	0.615	0.225	0.001
Dunn HR/AB	4/13 = 0.308	224/3529 = 0.063	0.003
Dunn Slugging %	1.692	0.490	

- Kershaw's pitches are average (**qop**[™]) or better (MPH)
- Dunn's batting is significantly better

→ MPH & **qop**[™] provide complimentary info

<u>#5 – Confirmation or Refutation of</u> <u>Results Based data</u>

- 1. Provide additional quantitative information for use with other measures
- Does qop™ confirm a change in pitch quality between a successful regular season and a disappointing postseason?

Clayton Kershaw 2014 Season

Table of Contents

- 1. Introduction
- 2. Motivation
- **3.** qop™
- 4. 2014 Case Study
 - a) When 2 no hit games are pitched, can a quantification index help us objectively identify the better pitching performance?
 - b) Can pitch quantification direct a manager or catcher in determining pitch selection?
 - c) Can a quantification index detect pitch deterioration that can precede injury?
 - d) Can an index validate or refute the outcome of certain pitcherbatter match-ups?
 - e) Does qop[™] confirm a change in pitch quality between a successful regular season and a disappointing postseason?
- ► 5. Conclusion

5. Conclusion

 GI & qop™ provide valuable new insights into pitching

- 2. Vision
 - International standardization of pitch evaluation
 - Change how kids see and train for the game
 - Open the door to new discoveries: medical, analytical, pitcher-training, and beyond
- 3. For further research
 - Model refinement with MLB pitching coaches
 - Applications: medical, analytical, pitcher-training
 - Park effects, weather effects, etc.

Questions?

• Dr. Jason Wilson

- Wayne Greiner <u>greiner@telusplanet.net</u>
 - Office 1.780.481.6434
 - Cell 1.780.910.1307

Available Data

- Spring 2015
- Historical qopa[™] by pitch type (2008-2014)
- Historical qopa[™] by MLB team (2008-2014)
- Current qop™ by player (2015)
- Current qopa™ by player (2015)

Pitch	4Seam	2Seam	Change	Curveball	Cutter	Sinker	Slider	Knuckle
Max	10.00	10.07	9.49	9.35	9.59	10.31	9.15	8.52
Avg	4.67	5.04	4.27	4.59	4.48	5.05	4.2	4.24

Year		doba
2008	Max	10.07
	Avg	4.47
2009	Max	9.98
	Avg	4.51
2010	Max	10.31
	Avg	4.46
2011	Max	10.21
	Avg	4.47
2012	Max	10.03
	Avg	4.57
2013	Max	10.00
	Avg	4.57
2014	Max	9.92
	Avg	4.57

qopbaseball.com

GREINER AGENCIES INC.

1478 Welbourn Drive Edmonton, Alberta, Canada T6M 2M1

Office - (780) 481-6434 Cell - (780) 910-1307 greiner@telusplanet.net

6. GI Model Output

Residuals:				
Min 1Q	Median	ЗQ	Max	
-2.1066 -0.4282 -	0.0656	0.3274	3.3782	
Coefficients:				
	Pr(>	t)		
Rise	0.005	19		
Breakpoint	< 2e-2	16		
Vertical break	< 2e-1	16		
Location	< 2e-1	16		
Horizontal break	6.1e-)5		
Residual standard	orror.	0 6724	on 419 d	<u>_</u>

Residual standard error: 0.6724 on 419 degrees of freedom Multiple R-squared: 0.9578, Adjusted R-squared: 0.9573 F-statistic: 1903 on 5 and 419 DF, p-value: < 2.2e-16

Actually 0.92, adjusting for nointercept model

Diagnostic Statistics

- 1. Residuals close to normal
- Common variance holds
- 3. Multicollinearity not a problem

Normal-QQ Plot of Residuals

1.

2. Residuals vs. Fitted Values

3. Name	Value(s)	Remark
Condition Number	124.2	Way below 1,000
Variance Inflation Factors	8.5, 7.4, 4.9, 4.2, 2.0	All below 10
Singular Values	120, 72, 36, 8, 1	Minimum value small, indicating possible removal of one parameter